Описание коллайдера

Загрузка ...
описание коллайдера Большой адронный коллайдер

Большой адро́нный колла́́йдер (англ. LHC, Large Hadron Collider), строящийся в настоящее время в Европейском центре ядерных исследований CERN (Centre Europeen de Recherche Nucleaire) усилиями физиков всего мира, является ускорителем, предназначенным для ускорения протонов и тяжёлых ионов. Целью проекта LHC прежде всего является открытие бозона Хиггса — важнейшей из экспериментально не найденных частиц Стандартной Модели (СМ) — а так же поиск явлений физики вне рамок СМ. Также большое внимание планируется уделить исследованиям свойств W и Z-бозонов, ядерным взаимодействиям при сверхвысоких энергиях, процессам рождения и распадов тяжёлых кварков (b и t).

История строительста

Идея проекта LHC родилась в 1984 году и была официально одобрена десятью годами позже. Строительство LHC началось в 2001 году после окончания работы предыдущего большого ускорителя CERN — электрон-позитронного коллайдера LEP (Large Electron-Positron Collider).

На коллайдере LHC предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (то есть 5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Большой адронный коллайдер строится в существующем туннеле, который прежде занимал LEP. Туннель с периметром 26,7 км проложен на глубине около ста метров на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре −271 °C. Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Первые тестовые столкновения с энергией 900 ГэВ (так называемый Commission Run) должны быть проведены летом 2008 года. Отметим, что энергия сталкивающихся пучков во время Commission Run будет в два раза ниже, чем энергия в системе центра масс на коллайдере Tevatron. В конце 2008 года планируется выход на энергию 7 ТэВ, а потом — достижение проектной энергии в 14 ТэВ.

После запуска LHC будет самым высокоэнергичным ускорителем элементарных частиц в мире, почти на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Tevatron, который в настоящее время работает в Национальной ускорительной лаборатории им. Э. Ферми (США) и Релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Технические характеристики

Светимость LHC во время Commission Run составит всего 1029 частиц/см²·с. Это весьма скромная величина. Однако, после запуска LHC для экспериментальных исследований светимость будет постепенно повышаться от начальной 5·1032 частиц/см²·с до номинальной 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

Планируется, что на LHC будут работать четыре детектора: ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment) и ALICE (A Large Ion Collider Experiment). Установки ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики». Детектор LHCb оптимизирован под исследования физики b-кварков, а детектор ALICE для поиска кварк-глюонной плазмы или кварк-глюонной жидкости в столкновениях ионов свинца.

Россия принимает активное участие как в строительстве LHC, так и в создании всех четырёх детекторов, которые должны работать на коллайдере.

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя LHC и детекторов, создаётся распределённая вычислительная сеть LCG (LHC Computing GRID), использующая технологию ГРИД. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@Home.

Опасения неконтролируемых физических процессов в коллайдере

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев связанных с работой LHC изложена на сайте.

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических черных дыр , а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными .

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая Релятивистский ионный коллайдер в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что такие объекты не могут возникать при энергиях коллайдера LHC в нашем четырёхмерном пространстве, так как для этого потребуется энергия большая на 16 порядков по сравнению с энергией пучков LHC. Гипотетические микроскопические чёрные дыры могут появляться в экспериментах на LHC в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если черные дыры будут возникать при столкновении частиц на LHC они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.